ON δg HOMEOMORPHISM IN GRILL TOPOLOGICAL SPACES

¹B.Sujatha, ²Dr.N.Chandramathi

¹Assistant Professor, Department of Mathematics, Hindusthan College of Engineering and Technology, Coimbatore-32, India ²Assistant Professor, Department of Mathematics, Government Arts College, Udumalpet, India

Abstract: This article is focused to introduce and explore the idea of a new class of homeomorphism called $\zeta\delta \hat{g}$ homeomorphism and $\zeta\delta \hat{g}$ c - homeomorphism using $\zeta\delta \hat{g}$ closed sets and study their basic properties.

IndexTerms- $\zeta\delta$ \hat{g} closed, $\zeta\delta$ \hat{g} open, $\zeta\delta$ \hat{g} continuous, $\zeta\delta$ \hat{g} irresolute.

I. Introduction

The idea of generalized homeomorphism and gc-homeomorphism was introduced and studied by H. Maki et.al [5]. The concept of δ homeomorphism, semi homeomorphism, α -homeomorphism, δ homeomorphisms were published in [3], [2], [6], [4]. We introduce $\zeta \delta$ \hat{g} homeomorphism and $\zeta \delta$ $\hat{g}c$ -homeomorphism. The association of $\zeta \delta$ \hat{g} homeomorphism with various existing homeomorphism is also studied.

II. PRELIMINARIES

Definition 2.1

A subset A of (X, τ, ζ) is $\zeta \delta$ \hat{g} closed set [1] if $\varphi_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\zeta \omega$ open in (X, τ, ζ) .

Definition 2.2

A function $f:(X,\tau,\zeta) \to (Y,\sigma,\zeta)$ is $\zeta \delta \hat{g}$ continuous $(\zeta \delta \hat{g})$ irresolute) if $f^{-1}(V)$ is $\zeta \delta \hat{g}$ open $(\zeta \delta \hat{g})$ open in (X,τ,ζ) for every open set $(\zeta \delta \hat{g})$ open (X,τ,ζ) .

$\zeta\delta$ g Homeomorphism

Definition 3.1

A function $f:(X,\tau,\zeta) \to (Y,\sigma,\zeta)$ is called an $\zeta\delta$ \hat{g} closed (resp $\zeta\delta$ \hat{g} open) map if for every closed subset A of X, f(A) is $\zeta\delta$ \hat{g} closed (resp $\zeta\delta$ \hat{g} open) in (Y,σ,ζ) .

Definition 3.2

A bijection $f:(X,\tau,\zeta)\to (Y,\sigma,\zeta)$ is said to be $\zeta\delta$ g homeomorphism if f is both $\zeta\delta$ g continuous and $\zeta\delta$ g closed.

Theorem 3.3

Every δ -homeomorphism is $\zeta\delta$ g homeomorphism and the reverse is false.

Proof:

Proof is direct by "every δ continuous map is $\zeta\delta$ g continuous and every δ open map is $\zeta\delta$ g open.

Example 3.4

Let $X = Y = \{u,v,w\}$ with $\tau = \{\phi,X,\{u\},\{v,w\}\}\}$ $\sigma = \{\phi,Y,\{u\},\{w\},\{u,w\},\{v,w\}\}\}$ $\zeta = \{X,\{u\},\{w\},\{u,v\},\{v,w\}\}\}$. Let $f:(X,\tau,\zeta) \to (Y,\sigma,\zeta)$ be an identity map. Clearly f is $\zeta\delta$ g homeomorphisms but not δ homeomorphisms. For the closed set $\{u,v\}$ in Y $f^{-1}\{u,v\} = \{u,v\}$ is not δ closed in X. This implies f is not δ continuous.

Remark 3.5

 $\zeta\delta\stackrel{\circ}{g}$ homeomorphisms is independent of $\zeta\alpha$ homeomorphism, semi-homeomorphism, α -homeomorphism and $\zeta\omega$ homeomorphism.

Theorem 3.6

The composition of two $\zeta\delta$ g homeomorphism fails to be a $\zeta\delta$ g homeomorphism and is given in the example.

Example 3.7

Let $X=Y=Z=\{u,v,w\}$ with topologies $\tau=\{\phi,X,\{v\},\{u,v\},\{v,w\}\}\}$ $\sigma=\{\phi,Y,\{v\},\{w\},\{v,w\}\}\}$ $\eta=\{\phi,Z,\{w\},\{u,v\}\},$ $\zeta=\{X,\{v\},\{v,w\},\{u,w\}\}\}$ $\zeta=\{X,\{v\},\{w\},\{v,w\},\{u,w\}\}\}$ Let $f:(X,\tau,\zeta)\to (Y,\sigma,\zeta)$ and $g:(Y,\sigma,\zeta)\to (Z,\eta,\zeta)$ be an identity map. Clearly f and g are $\zeta \delta$ homeomorphisms. For the closed set $\{w\}$ in X $g\circ f(\{w\})=\{w\}$ is not $\zeta \delta$ g closed in Z, so $g\circ f$ is not $\zeta \delta$ g homeomorphisms.

III. ζδ gc -HOMEOMORPHISM

Definition 4.1

A bijection $f:(X,\tau,\zeta)\to (Y,\sigma,\zeta)$ is said to be $\zeta\delta$ gc -homeomorphisms if both f and f^{-1} are $\zeta\delta$ g irresolute. **Theorem 4.2**

Every $\zeta \delta$ $\stackrel{\wedge}{gc}$ homeomorphism is an $\zeta \delta$ $\stackrel{\wedge}{g}$ homeomorphism.

Proof:

Let $f:(X,\tau,\zeta)\to (Y,\sigma,\zeta)$ be a $\zeta\delta$ $\overset{\circ}{g}c$ homeomorphism. Then f, f^{-1} are $\zeta\delta$ $\overset{\circ}{g}$ irresolute and f is bijection. Thus f and f^{-1} are $\zeta\delta$ $\overset{\circ}{g}$ continuous. Hence f is $\zeta\delta$ $\overset{\circ}{g}$ homeomorphism.

Remark 4.3

The converse is false is shown in the example.

Example 4.4

Let $X=Y=\{u,v,w\}$ with topologies $\tau=\{\phi,X,\{v\},\{w\},\{v,w\}\}\}$ $\zeta=\{X,\{v\},\{v,w\},\{u,w\}\}\}$, $\sigma=\{\phi,Y,\{w\},\{v,w\}\}$, $\zeta=\{X,\{v\},\{w\},\{v,w\},\{u,w\}\}\}$. Let $f:(X,\tau,\zeta)\to(Y,\sigma,\zeta)$ be an identity map. Then f is $\zeta\delta$ g homeomorphism but f is not $\zeta\delta$ g closed in X but $f\{w\}=\{w\}$ is not $\zeta\delta$ g closed in X.

Theorem 4.5

If $f:(X,\tau,\zeta) \to (Y,\sigma,\zeta)$ be $\zeta \delta \hat{g} c$ homeomorphism then $\zeta \delta \hat{g} - cl[f^{-1}(B)] = f^{-1}[\zeta \delta \hat{g} - cl(B)]$ for all $B \subset Y$.

Let $f:(X,\tau,\zeta) \to (Y,\sigma,\zeta)$ is $\zeta \otimes \hat{gc}$ -homeomorphism then $\zeta \otimes \hat{g} - cl[f(B)] = f[\zeta \otimes \hat{g} - cl(B)]$ for all $B \subset X$.

Theorem 4.7

The composition of two $\zeta \delta \stackrel{\circ}{g} c$ – homeomorphism is $\zeta \delta \stackrel{\circ}{g} c$ – homeomorphism.

Proof:

Let $g:(X,\tau,\zeta) \to (Y,\sigma,\zeta)$ and $h:(Y,\sigma,\zeta) \to (Z,\eta,\zeta)$ be $\zeta\delta$ g c – homeomorphism. Let S be a $\zeta\delta$ g open set in (Z,η,ζ) . Since h is a $\zeta\delta$ g -irresolute,

 $h^{-1}(\{S\})$ is $\zeta\delta$ g open set in (Y,σ,ζ) . Since g is a $\zeta\delta$ g -irresolute and bijective map,

 $g^{-1}(h^{-1}\{S\})$ is $\zeta\delta$ g open set in (X, τ, ζ) . That is $(h \circ g)^{-1}(V) = g^{-1}(h^{-1}\{V\})$ is $\zeta\delta$ g open in (X, τ, ζ) . This implies that $h \circ g$ is $\zeta\delta$ g -irresolute. Let T be a $\zeta\delta$ g open set in (X, τ, ζ) . Since g^{-1} is $\zeta\delta$ g -irresolute, $(g^{-1})^{-1}(T)$ is $\zeta\delta$ g open in (Y, σ, ζ) . That is g(T) is $\zeta\delta$ g open in (Y, σ, ζ) . Since g^{-1} is g g open in g ope

REFERENCES

[1].N.Chandramathi and B.Sujatha., 2019. δg Closed Sets in grill topological spaces, Malaya Journal of Matematik, Vol. 7,No. 4, 823-825.

[2].S.G.Crossley and S.K Hildebrand., Semi topological properties, Fund Math;74,1972,223-254.

[3]. Julian Dontchev et.al., 1997. On generalised delta closed sets and almost weakly Hausdorff spaces, Topology Atlas.

[4].M.LellisThivagar and B.Meeradevi., 2011. Notes on homeomorphisms via δg -sets, Journal of Advanced Studies in Topology, vol.2 , No.1, 37-43.

[5].H. Maki et.al., Studies on generalizations of continuous maps in topological spaces, Ph.D Thesis Bharathiar University, Coimbatore, Tamilnadu.

[6].Mashhour.A.S., Hasanein.I.A and EI-Deeb.S.N., 1983.On α continuous and α open mappings, Acta.Math.Hunga.41,213-218.

